Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro.
نویسندگان
چکیده
In the mouse embryo, early organogenesis is characterized by the formation of a functional cardiac muscle, such that 9-day embryos exhibit beating, although not fully developed hearts. In light of this observation, we found it intriguing that mouse embryoid bodies (EB), which can develop in vitro from totipotential embryonic stem cells, undergo spontaneous contractile activity. To determine if these cells are capable of recapitulating aspects of cardiogenesis, a cDNA library was prepared from beating EB and screened with a chicken skeletal myosin heavy chain cDNA. We found that the predominant myosin transcripts in the library encode the alpha- and beta-cardiac isoforms. In addition, an embryonic skeletal myosin cDNA was isolated. The myosin heavy chain transcripts in both EB and 9-day embryonic hearts were found to be the same. Transcript-specific primers were prepared, and polymerase chain reaction analyses on single EB were carried out. The data show that a single EB is capable of expressing both the alpha- and beta-isoforms as well as very low amounts of the embryonic skeletal transcript. These data indicate that EB transcribe the appropriate tissue- and developmental stage-specific myosin heavy chain genes and therefore serve as a model system for studying early cardiogenic processes at the molecular level.
منابع مشابه
Myosin heavy chain gene expression in mouse embryoid bodies. An in vitro developmental study.
Embryoid bodies (EBs) are obtained when mouse pluripotential embryonic stem cells are grown in the absence of an embryonic fibroblast feeder layer. Seven- to 9-day-old EBs undergo rhythmical, spontaneous contractions and express the appropriate tissue- and developmental stage-specific cardiac and skeletal myosin heavy chain (MHC) genes. To study the expression patterns of these MHC genes in vit...
متن کاملHIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells
Cardiac cell formation, cardiomyogenesis, is critically dependent on oxygen availability. It is known that hypoxia, a reduced oxygen level, modulates the in vitro differentiation of pluripotent cells into cardiomyocytes via hypoxia inducible factor-1alpha (HIF-1α)-dependent mechanisms. However, the direct impact of HIF-1α deficiency on the formation and maturation of cardiac-like cells derived ...
متن کاملEvaluation of In Vitro Differentiation of Cardiomyocyte-like cells Derived from Human Bone Marrow Mesenchymal Stem Cells
Purpose: To investigate the in vitro differentiation process of cardiomyocyte-like cells derived from human bone marrow mesenchymal stem cells under the influence of 5-azacytidine (5-aza). Materials and Methods: After purification, human bone marrow mesenchymal stem cells were exposed to 5-aza at a concentration of 5 μmol for 5 weeks to induce cardiomyocyte differentiation. To induce differenti...
متن کاملSmall molecules that induce cardiomyogenesis in embryonic stem cells.
A phenotypic cell-based screen of a large combinatorial chemical library led to the identification of a class of diaminopyrimidine compounds (cardiogenol A-D) which can selectively and efficiently induce mouse embryonic stem cells (ESCs) to differentiate into cardiomyocytes. ESC-derived cardiomyocytes were shown to express multiple cardiac muscle markers, including myosin heavy chain, GATA-4, M...
متن کاملCardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation
Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium.Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 20 شماره
صفحات -
تاریخ انتشار 1990